Requirements for the success of a digital euro
Eduard de Jong
version 1—21/03/23

Abstract

The issuance of a digital currency by a central bank (CBDC) is foremost a political decision as it concerns the accessibility by the citizenry to the means of payment in a society. The technical solution to implement CBDC must follow the political objectives. This note presents the key political aspects to be considered and analyses risks, technical requirements and business perspectives of current proposals, in particular for the digital euro.

Introduction

The requirements for a digital euro, must be grounded on money as a social good. These requirements must be captured properly so that the resulting implementations will be widely accepted and will work as required to comply with EU law and policy. These requirements can be implemented with existing technology, but not with existing products that were built to meet different requirements. My observations here are from the perspective of an expert in this domain. I have over 30 years experience with the technology and the standards required to enable it.

There are three types of money, Bank Reserves, Commercial Bank Money, and Cash. Real world implementations of bank reserves and commercial bank money have already moved to the digital world. These are account-based systems that are easily and effectively implemented using standard software technology. Cash is different. It has unique requirements that cannot be met with ledgers and standard software. The role of CBDC is to fill the gap for cash in the digital realm.

<table>
<thead>
<tr>
<th>Cash</th>
<th>Bank Reserves</th>
<th>Commercial Bank Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Notes and Coins</td>
<td>Paper Ledgers Legacy/Obsolete</td>
</tr>
<tr>
<td>Digital</td>
<td>CBDC</td>
<td>Digital Ledgers</td>
</tr>
</tbody>
</table>

A digital euro must be cash-like in order to succeed as a CBDC. To understand what this implies, we need to look at all aspects of what it means to be like cash in a digital world.

One of the primary roles for cash is for payment. The current absence of a CBDC has created a business opportunity for commercial enterprises to offer different forms of digital payment. While these may be suitable for a variety of commercial uses, they are not cash.

It may be appropriate for governments to create and manage citizen accounts for activities such as taxation, but these accounts are not cash.

Attempts to enhance these accounts with additional features will not turn them into cash.

Cash facilitates commerce because it can be used anywhere, anytime, without an intermediary. It is the role of government to insure that that the essential features of cash are delivered by the digital euro in a form that aligns with all of the requirements of the EU.
Here are some of the specifics that need to be addressed by a digital euro.

Table of Contents

Introduction..1
Political issues...2
 1 Privacy..2
 2 Accessibility..2
 3 Social justice...3
 4 Financial inclusion...3
 5 Oversight/AML...3
Technology...4
 Technical Dead Ends...4
Legal..5
Conclusion..5
Annex A—Risks..6
Annex B—Notes on Existing Requirements Studies..7
Annex C—Techno hubris, the role of banks and large and small and large IT companies..............9
About the author...10
Political issues:

Money is a public good. This overarching requirement has major implications for cash. Cash is, and should, be a primary form of payment. It is the money of last resort for the poor, for social outcasts, political dissidents, and other disenfranchised groups. To succeed, any implementation of a digital euro must meet the needs of the public.

- Privacy
- Accessibility
- Social justice
- Financial inclusion
- Oversight/AML

Privacy

Privacy protection must be by design. Only data that is not captured cannot be compromised.

The experience is clear: large, valuable datasets can be compromised. In the last decade, personal information has been exposed for over 1000 million people!

With modern cryptography, secure payments can be managed without including the identity of both parties in each transaction. Protecting privacy is an essential design requirement for digital payments, this means that the resulting data does not contain information that can be abused.

Both on the anti-government right and on the populistic left a lot of noise is being made on the claimed lack of privacy protection in the digital euro as currently proposed. In particular, a Big-Brother narrative is constructed with the ECB as actor for government spying to enable control. The technical design currently being discussed for the digital euro project make this narrative credible.

How far can you trust the system to be private, if transactions might be revealed due to a technical failure, a corrupt administrator, or a change in government?

It is possible to operate a system with oversight, without also collecting and storing every detail.

Accessibility

Payments with a digital euro must be usable by every European citizen and enterprise.

One of the important benefits of a digital euro is the opportunity to improve accessibility. Personal digital devices to make a digital payment can be made available to anyone, e.g., distributed via post offices and social services. They can be implemented with access enhancements such as larger typography and audio feedback, along with a wide range of input devices. Since populations with accessibility issues vary in size and needs, it is essential to require the system follow open standards so any organisation or group can develop and deploy fitting devices.

Having a secure hardware device for payments is essential to give the user true ownership of digital money. This will require oversight and supply chain management for the devices. It is also important to make as much of the system as possible work with unsecured software to lower the cost and increase the flexibility of devices and networks that can used.
Social justice

Cash is for everyone, not just favoured groups and elites.

Physical cash plays an important role in social justice, placing day-to-day payments for goods within reach of everyone in society. While bank accounts and ledgers play a very large and important role in financial systems, they are subject to social manipulation. Outcast groups are denied accounts, political dissidents have payments blocked, and other injustices are enabled.

A Central Bank Digital Currency (CBDC) for the euro must provide cash-like resistance to political manipulation and deliver a payment system that works for everyone. This starts with privacy, and includes requirements for independence from centralised controls and 3rd parties who might be tempted to manipulate access, e.g. by monetising it.

Financial inclusion

For individuals without access to accounts, cash is a lifeline.

The digital euro must fit in with the current banking systems and accounts, and, it must also work for situations and people that do not have access to banks and accounts. To achieve this, its technical design must allow direct distribution and use of digital euros.

There are always unbanked individuals, who nevertheless need access to funds and payment services to survive. A digital system can enable this and make life better for the individual, without the need for “on-boarding” or other hurdles. At the same time, the issuing central bank can retain overall control and oversight of the situation by enforcing policy within the system. With the right design, a digital euro can be a significant improvement over physical cash.

This type of inclusion is also important in situations that may arise due to natural disasters or infrastructure failures, temporarily rendering a larger population unbanked and unable to access their accounts.

Whatever the reason for these situations, the digital euro must function for these individuals at such times. A digital euro can be faster and easier in reaching the intended recipients than physical cash.

Oversight/AML

Visibility and controls, not Big Brother.

A cash-like CBDC must monitor the system for security and operational management, e.g. money velocity, volume, and unusual patterns. For this purpose the system implementation must provide the means to gather operational data.

The identity of the payer in every transaction is not required. Privacy can be absolute. Operational data can be obtained by monitoring received cash-like payments. This data set is sufficient to insure the correct operation of the system. Illegal activities such as money laundering, can be detected from the pattern of receipts. This is also appropriate for tax avoidance. Even this can be done while still protecting the payee identity by using pseudonymous identifiers. Regulators need to focus on the pattern of transactions to identify suspect activities.

Current AML regulations were introduced for accounts that know personal details of both parties involved in the transfer. The legal texts will need to be updated to focus on the pattern of receipts, sufficient to justify unmasking the participants.
Technology

Technology must meet the requirements for the Digital euro, not the other way around.

In order to deliver the key requirements for privacy, accessibility, social justice, and financial inclusion, the digital euro must be a cash-like system.

There are on-going discussions about an account-based digital euro. The current architecture and technical design from the ECB is for creating bank accounts for all European citizens. This design depends on commercial banks willing to act as intermediaries to authenticate users and forward the payment authorisation to the central bank maintaining the citizen's accounts. It also depends on third parties to provide the secure devices that give users control over spending. This may be a useful extension to bank accounts in the EU, but it is NOT a digital euro. It fails immediately on actually, convincingly, providing privacy, social justice, and financial inclusion.

Meeting these requirements requires a cash-like system that can function completely off-line with value held in true bearer payment instruments. Technology is available for electronic cash (e-cash)\(^1\) that meets this requirement. E-cash provides inherent protection of payer privacy as no data is recorded of the person making the payment. It supports any type of payment both offline and online. An e-cash payment is between two parties, it is final there and then. No intermediaries are required. It can issued by any of the central banks in the euro system and securely provisioned to users by banks, social services or post offices. Development and deployment cost for an e-cash digital euro, as well as operational costs, will be significantly less than for an account based system with intermediating banks, large replicated data centres and hardened communication infrastructure.

There will be development costs to create the detailed requirements and to configure and test a system that meets them. Commercial off-the-shelf solutions are designed to capture fees and transaction details that could be monetised. The digital euro requires technology that protects the privacy of payments and minimises transaction costs so that payments can be free.

A system that implements direct peer-to-peer payments will protect privacy by design. Because payment is between two devices, higher payment volumes will not result in higher backend costs, as it will for any ledger or account-based system.

The core design must then be standardized and delivered through well-established open source licenses to enable the participation of a wide range of vendors. The operation of the digital euro must include testing and validation for critical system components.

Technical Dead Ends

- Account-based systems – While accounts are very capable systems, they do not meet the requirements for a cash-like digital euro.

- Distributed Ledger Technology (DLT) – Crypto currency systems like Bitcoin and Ethereum have made extravagant promises for many things they are incapable of delivering. Payment and privacy are well known examples. None of these systems meets the core requirements for a digital euro. The loud, aggressive, and well-funded promotion of these technologies is

\(^1\) More information on e-cash as digital euro can be found in https://eduard.dejongfrz.nl/papers/latest-kingwillreturn.pdf
Legal

Compliance with applicable laws is a requirement.

As a technology expert, my only comment on the legal aspects of a digital euro is a reminder that the legal structure of the EU is the framework that the digital euro must fit within.

In this context, the extant legal framework gives the European Parliament a role in the usability of the euro, that is, specifically on the mentioned key design requirements, privacy, accessibility and financial inclusion.

If a potential technical solution does not meet these essential requirements it will fail.

Conclusion

The focus for a digital euro must be on a comprehensive set of requirements that will ensure the success of the project. Therefore technologies must be selected that can convincingly meet every aspect of these requirements.

From the set of requirements summarised in this document, we can see that an account-based technical solution fails in essential areas. The projects working on accounts must either be stopped, or re-framed as what they are: enhancement to existing account systems.

The digital euro efforts must focus on the gap in the monetary system: digital cash.
Annex A—Risks

Failure of the digital euro project will have a political impact both on the EU internal position of the euro and on its the global standing. Several threats can be identified in the project to issue a digital euro:

1. Failure to be adopted or adopted in sufficient number by European citizens and enterprises.
 1. Poor adoption by users. The user experience must be positive and compare favourable to alternatives. This requires both careful implementation and testing, as well as messaging to support the project.
 2. Limited adoption by merchants. Benefits must be greater than the direct, operational, and administrative costs.
 3. Poor adoption of offline payment. Enabling offline payment is a signature feature for digital payment. Experience from many decades shows that users need a lot of education to change their behaviour, even when it is in their best interest.

A digital currency creates a classic “chicken and egg” problem. Both user and merchant acceptance is essential and neither can come first. This requires careful planning to ensure that “critical mass” is realised by techniques such as geographic sequencing or market segment enablement.

2. Failure to realise key objectives:
 1. Excluding the underbanked and socially weak from digital payments.
 2. Not reducing cost of payment for society.
 3. Poor environmental footprint.

3. The digital euro project as currently design is technically complex, it involves a large number of functional components that interact with each other and are operated by multiple parties.
 1. Cost overrun is rather common for large IT projects, as is initially underestimating the costs to make it politically acceptable
 2. Participating financial institutions claiming excess development expenses for integrating functional components, with leverage over the ECB as their collaboration in the project is essential for deployment and possible success.
 3. Failure for external funding to become available at the right level for the expected FinTech innovations to be able to be realised.

4. Large IT system are known to have security security failures that may result in privacy protection violation, identity theft and fraud. Any such a breach will damage trust in the digital euro.

5. The current design enhances critical dependencies in the payment system by relying on availability of data communication that is to be provided by commercial entities.

Annex A to the 2020 report by experts from several central banks published by the BIS on the foundational principles and core features of CBDC presents a list of 14 essential questions that are strongly recommended to be answered for each concrete deployment of a CBDC. The ECB should provide these answers for the current proposal.

2 I have created a concept document that addresses the issues raised in this BIS report for a CBDC implementation as e-cash, which can be made available.
Annex B—Notes on Existing Requirements Studies

Since 2019 the European Central Bank (ECB) and the Bank for International Settlement (BIS) and others have published documentation on how a Central Bank Digital Currency (CBDC) could be implemented. Only one technical model was considered in these documents, the use of bank accounts to hold Central Bank currency for users as a direct liability for the central bank. An alternative model to implement CBDC as a fully distributed system where a payment is done by transferring electronic cash (e-cash) from one electronic purse (e-purse) to another one has not been considered. This choice is not merely a technical detail as these options have very different inherent properties with respect to protection of user privacy, system resilience, cost of payment, cost of development, deployment and operation, and accessibility.

Cost of payment for society have been increasing with the shift to card based payments. Turning payment into a cash cow has taken place since the beginning of the century. First on the consumer side with banks and their card cartels and, more recently, the IT giants, Apple, Google, Meta. There are also such developments on the side of the payment recipients: the "payment service providers" (PSP) have emerged to skim the milk. Thanks to the network effect, the internet means that many of those parties now form an oligopoly.

A successful digital euro, one that is used by many for payment and widely acted upon, could be a good tool to better make money a public good. Unfortunately, the current thoughts on implementation of CBDC in the published documentation do not give the impression that success factors in the discussion about technical solutions. it seems that a lobby of the existing players, banks?, are quite successful with a campaign of Fear Uncertainty and Doubt (FUD) resulting in proposals for toothless implementations of CBDC.

A clear political, societal purpose for issuing digital euro has yet to be stated.

The 2020 ECB report lists 7 “scenarios” for issuing a digital euro and derives system requirements for a digital euro system for each one. The presented scenarios can be considered as a smorgasbord of goals.

Clearly the EP can specify the goals for the digital euro as a choice in the presented scenarios, including in ranking their importance and extending the derived system requirements with further operational conditions. The euro treaties give the Parliament a say on the use of the euro; these requirements clearly address precisely its use.

A more political purpose for the digital euro can be formulated as “protecting money as public good against encroachment by large IT companies.” Such encroachment would further privatisate the payment infrastructure and make it less accessible by European citizens by imposed fees.

A second political purpose for a digital euro can be to reduce the costs of payment for society. This purpose aligns with scenario #7 with the objective of lower costs and reduced ecological footprint for payment is mentioned. At present a large part of the costs of payments is are fees for intermediation by financial institutions, payment card schemes, and payment service providers; reducing the system costs implies reducing revenues for these players. They will likely mobilise opposition against this objective. Basis for this opposition could be the core principle #5 “to not crowd out private solutions” formulated in the ECB report.

In a social-democratic context, a statement about money & payment can be: payment is a right, not a way to earn money.
Scenario #4, to ease implementation of monetary policy, including (negative) remuneration of balances held in digital euro in one legal analysis has been described as out of the legal bounds of the euro treaties on the issuance of euros. The negative interest that could be applied in this scenario is hard to justify; political resistance against this scenario has already been expressed.

Scenario #5, to improve resilience of the monetary system is easy to support. As is the technical principle to achieve this: redundancy of resources for processing, communication and data storage. However, realisation is far from trivial: in a fully distribute system such as conventional cash, resilience is implicit. In a centralised a system resource replication is costly with higher capital expenses and operational costs and requires redundant communication to keep replicated data consistent. Replicated data and processing also provides a larger attack surface for cyber criminals. The current, preliminary, technical proposal for the digital euro is for a centralised system and specifies triple replication for each of the multiple implementing computer systems. In this proposal resilience will likely not be improved over the extant intermediated bank payments. The question on this scenario is how serious it should be pursued.
Annex C—Techno hubris, the role of banks and large and small and large IT companies

In section 3, the ECB 2020 report introduces constraints on the realisation of the digital euro. One these can be summarised as that the business result of commercial banks will not be affected by the introduction of the digital euro. This constraint is in direct contradiction to scenario #7, to reduce the financial footprint of payments in the European economy: Reduced costs directly translates in less revenue in fees for intermediaries. Clearly there is a need for political guidance on this issue.

Noticeable is the different arguments made by banks with respect to the costs and benefits of sight deposits (payment accounts). On the one hand, towards consumer organisations, the costs of implementing AML\(^3\) review of payments is presented as reason for each subsequent increase in customer fees, both for citizens and enterprises. On the other hand, towards the central bank, sight deposits are presented as essential to provides banks with sufficiently cheap funding of business and consumer loans, which are deemed essential to the economy. These arguments cannot both be true!

Financial innovation has been presented as one of the societal benefits that CBDC, the digital euro, could be supporting, similar to the adoption of the open banking regulations. There may be a lot of wishful thinking here as over the last 10 years a large fraction of fintech startups have failed by customers leaving after the introductory period of low fees ended in order to become profitable. Many fintech startups attracted investments when the effective interest rate was zero or negative, with this history of failure funding for fintech may not be so abundantly available in the future. Expecting FinTech to help realise the success of CBDC is techno hubris.

With the network effect provided by the internet the large, global, oligopolistic IT companies are in the prime position to play a larger role in payments requiring only moderate innovative positioning. A digital euro might provide these companies a platform for competing with traditional financial institutions.

\(^3\) A different issue is the very high ratio of costs of implementing AML/CTF over the actual number of detected attempts to launder money or fund of terrorism.
About the author

Eduard de Jong has been involved in digital money since 1990, when he started working for the cryptographer David Chaum, founder of the Dutch startup DigiCash B.V.. From June 1991 till June 1994 he participated in the European standardisation in CEN TC 224/WG 10 for an “intersector electronic purse,” which was issued as EN 1546. During that time he applied for and was granted a patent on a unique method to make atomic, idempotent e-cash payments. In 2014 he cofounded the UK company TransaXiom Ltd. to bring this invention to market for small value payments using a smart card as e-purse.

Early 2023 the author published a paper \textit{“Cash: the once and future king”} with a proposal to implement CBDC with transferable e-cash for offline and online anyone-to-anyone payments. With transferrable e-cash a single functional component in the system handles money, the e-purse. An e-purse can be built to different levels of physical security commensurate with the amount of money stored and payable, e.g. distinct for users, merchants and banks. Other system components are needed, to support the payment operations and to manage system operations.

A key feature in proposal is that the e-purse can be issued to its users loaded with a specific monetary value at the point it is provisioned to the user, in exchange for payment. This makes the e-purse a digital bearer instrument, just like a bank note. The e-cash circulates between e-purses fed by the issuer with a special dedicated one-of-a-kind e-purse that supports a special top-up operation. An issuer top-up results in additional currency being issued.

In this memo I explain how this technical option, e-cash, can implement a future of payments in a more social democratic direction that aligns with the requirements for a digital euro.

Table of Contents

Introduction...1
Political issues..2
 1 Privacy..2
 2 Accessibility..2
 3 Social justice..3
 4 Financial inclusion..3
 5 Oversight/AML..3
Technology..4
 Technical Dead Ends...4
Legal...5
Conclusion...5
Annex A—Risks...6
Annex B—Notes on Existing Requirements Studies..7
Annex C—Techno hubris, the role of banks and large and small and large IT companies........9
About the author..10

\footnote{The paper can be downloaded from \url{https://eduard.dejongfrz.nl/papers/latest-kingwillreturn.pdf}}